Commutative Algebra
 Fall 2013, Lecture 8

Karen Yeats
Scribe: Mahdieh Malekian

October 2, 2013

1 Finitely Generated Modules over PIDs

Recall the following definition and the lemma from last lecture:
Definition. A submodule N of M is pure if whenever $a x \in N$, with $x \in M, a \in$ R, then there exists $z \in N$ such that $a z=a x$.

Lemma 1 If $P=R x_{0}$ is a pure cyclic submodule of a finitely generated module N and N / P is a direct sum of cyclic modules then $N=N / P \oplus P$.

Throughout the lecture today we assume that R is a PID, and M is a finitely generated module over R.
Definition. For p a prime in R we define $M_{p}=\left\{m \in \operatorname{tor} M: \exists i, p^{i} m=0\right\}$.
Proposition $1 M_{p}$ is a direct sum of cyclic modules.
Proof. Let x_{1}, \ldots, x_{k} be a minimum set of generators of M_{p}. We prove the proposition by induction on k. If $k=1$ then trivially M is cyclic.

Now suppose $k>1 . M_{p} / R x_{1}$ is generated by x_{2}, \ldots, x_{k}. So, by induction it is a direct sum of cyclic modules. If $R x_{1}$ is pure then we are done by the lemma, so we just need to show that $R x_{1}$ is pure. Let $R_{p^{n_{i}}}=\operatorname{Ann} n_{R}\left(x_{i}\right)$, in particular $p^{n_{i}} x_{i}=0$. Let $n=\max \left\{n_{1}, \ldots, n_{k}\right\}$. Permuting if necassary, we may assume without loss of generality that $n_{1}=n$. Also $p^{n} M_{p}=0$ since p^{n} annihilates each generator. Take $y \in M_{p}, a \in R$ with $a y \in R x_{1}$. If $a y=0$ then $a y=a 0$, so the purity condition is satisfied. Suppose $a y \neq 0$. Write $a y=b x_{1}$ for some $b \in R, b \neq 0$.

Write $a=p^{k} s, b=p^{m} t, p \nmid s, p \nmid t$. Since $\operatorname{gcd}\left(s, p^{n}\right)=1, \exists r, c \in R$ such that $r s+c p^{n}=1$, so $r s=1$ on M_{p}. As $b x_{1} \neq 0$, and $b x_{1}=p^{m} t x_{1}$ we have $m<n$.

$$
\begin{aligned}
& \overbrace{\overbrace{n-m-1}}^{\geq 0} \\
& a y=p^{n-m-1+k} s y \\
&=p^{n-1} t x_{1} \neq 0, \text { as } p^{n-1} \notin A n n_{R} x_{1} .
\end{aligned}
$$

So $n-m-1+k<n$, so $k<m+1$ so $k \leq m$. So

$$
\begin{aligned}
a y=p^{k} s y=p^{m} t x_{1} & =p^{m} s r t x_{1}, \text { as } s r=1 \\
& =a p^{m-k} r t x_{1},
\end{aligned}
$$

where $p^{m-k} r t x_{1} \in R x_{1}$, as $p^{m-k} r t \in R$. So $R x_{1}$ is pure.

2 Composition Series

Definition. A module is simple if it has no proper nontrivial submodules.
Note. Simple modules are cyclic, as $M=0$, or take $a \neq 0, a \in M ; R a$ is a submodule, so $R a=M$.
Note. A simple vector space is a 1-dimensional vector space.
Proposition $2 A$ nozero module M is simple iff $M \cong R / L$ when L is a maximal left ideal of R.

Proof. First assume M is simple, we know that M is cyclic, so $M \cong R / L$, where L is a left ideal. If L is not maximal then take $a \in R$, where the ideal generated by L and $a, L+a$, is not R, then $L+a$ gives a proper submodule of M.

Now assume that $M \cong R / L$, where L is a maximal left ideal. Say N is a proper nontrivial submodule of R / L. Take $0 \neq a+L \in N$, then the ideal generated by L and a properly contains L, so by maximality it must be R. So there exist $l \in L, r \in R$ such that $r a+l=1$, so $r(a+L)=1+L \in N$, so N is not proper.
Definition. Consider a finite descending chain of submodules of $M, M=M_{0} \supsetneq$ $M_{1} \supsetneq \ldots \supsetneq M_{t}$. We say the chain has length t. The factors are the M_{i} / M_{i+1}, and a composition series is a chain with $M_{t}=0$ and with all factors simple.

Note.

1. If $M=M_{0} \supsetneq M_{1} \supsetneq \ldots \supsetneq M_{t}$ is such a chain, and N a submodule of M_{t}, then $M / N=M_{0} / N \supsetneq M_{1} / N \supsetneq \ldots \supsetneq M_{t} / N$, and by Second Isomorphism Theorem

$$
M_{i-1} / M_{i} \cong M_{i-1} / N / M_{i} / N
$$

so the factors are isomorphic.
2. If $M_{i-1} \supsetneq M_{i}$ and M_{i-1} / M_{i} is not simple, then there exists N submodule of M_{i-1} such that $M_{i-1} \supsetneq N \supsetneq M_{i}$, this is called refining the chain.
3. If S is a simple submodule of M and N any submodule of M, by Third Isomorphism Theorem $(N+S) / N \cong S / N \cap S$, which is 0 or S. So if $M=\sum_{i=1}^{k} S_{i}$, let $M_{k}=\sum_{i=1}^{t-k} S_{i}$, then $M=M_{0} \supseteq M_{1} \supseteq \ldots \supseteq M_{t-1} \supseteq 0$, and, discarding duplicates, this is composition series.

Definition. Two chains are equivalent if they are the same length and they have isomorphic factors up to permutations.

Theorem 1 (Schriever-Jordan-Hölder) Suppose M has a composition series, $M=M_{0} \supsetneq M_{1} \supsetneq \ldots \supsetneq M_{t}=0$, then

1. Any finite chain of submodules $M=N_{0} \supsetneq N_{1} \supsetneq \ldots \supsetneq N_{k-1} \supsetneq 0$ can be refined to be equivalent to $M=M_{0} \supsetneq M_{1} \supsetneq \ldots \supsetneq M_{t}$. Consequently
2. Any two composite series of M are equivalent.
3. Let $l(M)$ be the length of any composition series of M, then $l(M)=$ $l(N)+l(M / N)$ for any N submodule of M, and, in particular, N and M / N have composition series.

Proof.

1. Let $N_{k}=0$, and let $N_{i, j}=N_{i+1}+\left(M_{j} \cap N_{i}\right), 0 \leq j \leq t, 0 \leq i \leq k-1$. Each $N_{i, j}$ is a submodule of M. Note that

$$
\begin{aligned}
& N_{i, 0}=N_{i+1}+\left(M \cap N_{i}\right)=N_{i}, \text { since } N_{i+1} \subseteq N_{i} \\
& N_{i, t}=N_{i+1}+\left(0 \cap N_{i}\right)=N_{i+1}
\end{aligned}
$$

So we have

$$
\begin{aligned}
M=N_{0} \supseteq \ldots \supseteq & N_{i-1, t}=N_{i}=N_{i, 0} \supseteq N_{i, 1} \\
& \supseteq \ldots \supseteq N_{i, t}=N_{i+1}=N_{i+1,0} \supseteq \ldots \supseteq N_{k}=0
\end{aligned}
$$

Note many quotients will be 0 . We can do the same with the roles of M_{i} and N_{i} swapped. Between

$$
M_{i}=M_{i, 0} \supseteq M_{i, 1} \supseteq \ldots \supseteq M_{i, k}=M_{i+1}
$$

all quotients are trivial except one which is M_{i} / M_{i+1}, since M_{i} / M_{i+1} is simple.
Claim. $N_{i, j} / N_{i, j+1} \cong M_{j, i} / M_{j, i+1}$.
Proving the claim suffices to prove (1), because then removing terms which are equal to $M_{i, j}$ sequence is the original composition sequence and the $N_{i, j}$ is equivalent so it is a refinement satisfying (1).
Proof of Claim. We will prove

$$
N_{i, j} / N_{i, j+1} \cong N_{i} \cap M_{j} /\left(N_{i} \cap M_{j+1}\right)+\left(N_{i+1} \cap M_{j}\right) \cong M_{j, i} / M_{j, i+1} .
$$

As the middle term above is symmetric in i, j, it suffices to prove the first equivalence. Third Isomorphism Theorem says $A+B / B \cong A / A \cap B$. Let $A=N_{i} \cap M_{j}, B=N_{i, j+1}=N_{i+1}+\left(M_{j+1} \cap N_{i}\right)$, then

$$
\begin{aligned}
A+B & =\left(N_{i} \cap M_{j}\right)+N_{i+1}+\left(M_{j+1} \cap N_{i}\right) \\
& =N_{i+1}+\left(N_{i} \cap M_{j}\right) \text { since } M_{j+1} \subseteq M_{j} \\
& =N_{i, j} .
\end{aligned}
$$

And

$$
\begin{aligned}
A \cap B & =\left(N_{i} \cap M_{j}\right) \cap\left(N_{i, j+1}=N_{i+1}+\left(M_{j+1} \cap N_{i}\right)\right) \\
& =\left(N_{i+1} \cap M_{j}\right)+\left(M_{j+1} \cap N_{i}\right) .
\end{aligned}
$$

2. Direct consequence of (1).
3. Refine $M \supseteq N \supseteq 0$ to a composition series. This givesa composition series for N (just truncate) and it gives $M=M_{0} \supsetneq M_{1} \supsetneq \ldots \supsetneq M_{v}=N$, then

$$
M / N=M_{0} / N \supsetneq M_{1} / N \supsetneq \ldots \supsetneq M_{v} / N=N / N=0,
$$

and so the lengths add.

Corollary 1 Say N is a submodule of $M, l(N)=l(M)<\infty$. Then $M=N$.
Proof. $l(M / N)+l(N)=l(M)$, so $l(M / N)=0$, so $M / N=0$, so $M=N$.
Corollary 2 If $0 \rightarrow K \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is an exact sequence of modules, then $l(M)=l(K)+l(N)$.

Proof. By exactness we have $l(K)=l(f(K))$. Also, by First Isomorphism Theorem, and then, by exactness, we have $N \cong M / \operatorname{ker} g=M / f(K)$, so

$$
l(K)+l(N)=l(f(K))+l(M / f(K))=l(M)
$$

Note. The proof of Jordan-Hölder Theorem only needs the three isomorphism theorems, so it holds in any context where they all are true, including groups.

